Practice Problems

work = joules

power = watts

Units:

energy = joules

Weight = newtons

Height = meters Mass = kilograms

 $acceleration = m/s^2$ Force = newtons

Speed = m/sVelocity = m/s in a specific direction

Section 1: Calculating Potential and Kinetic Energy

Formula: Potential energy = weight x height (PE = $W \times H$)

Kinetic energy = $\frac{1}{2}$ (Mass x Velocity²) or (K.E. = $\frac{1}{2}$ mv²)

1. You serve volleyball with a mass of 2.1 kg. The ball leaves your hand with a speed of 30 m/s.

The ball has Kunetic energy. Calculate it. $KE = \frac{1}{2} (M \times V^2)$

12 (2.1 kg · (30 m/s)²) $\frac{1}{2}$ (1890) 12 (2.1 kg · 900 m/s² · 9455 2. A cinder block is sitting on a platform 20 m high. It weighs 79 N. The block has potential energy.

Calculate it.

Section 2: Speed (velocity is speed with direction) and Acceleration

$$T = \frac{D}{S}$$

1. Find the velocity of a truck that travels 75 miles north in 2.5 hours.

75 miles = 30 milesperhour North

2. Find the speed of a bicyclist who took an hour and a half to travel 10 kilometers.

S= P= lokm [6.67 Km]hr]

3. If a runner maintains a constant speed of 12 miles/hour, how long will it take to complete a half

marathon race of 13.1 miles? _ T= = 13.1 mattes = 1.09

4. A helium balloon is carried by the wind at a constant speed of 10.17 mph. How far did the balloon travel in one day? D=SXT 10:17mph X24 hrs

a = vf - vi t A paperboy rode his bike at 3 m/s. After being chased by a dog for 8 seconds, he was traveling 6 m/s. What is his acceleration? 6. A soccer player is running at 6 m/s. He then stumbles over an opponent's foot falling and rolling to a stop. This took 4 seconds. What was his acceleration? Omls - lems lems - 1.5 m/s H S
Section 3: Force
Force $F = M \cdot A$ $A = F$ The mass x acceleration $A = F$ $A = F$ $A = F$
1. How much force is needed to accelerate a mass of 160 kg by 2 m/s^2 ? $F = \text{mxA} = \text{160kgx2m/s}^2 = \text{330N}$
2. How much force is required to accelerate a 5 kg mass at 20 m/s ² ? $F = MA = 5 \text{ kgx } 20 \text{ m/s}^2 = 100 \text{ N}$
3. What is the acceleration of a 10 kg mass pushed by a 5 N force? $A = \frac{5 N}{10 \text{ kg}} = 5 \text{ m/s}^2$
4. Given a force of 56N and acceleration of 7 m/s ² , what is the mass? $M = \frac{F}{A} = \frac{56N}{7m/s} = \frac{8}{500} \times \frac{1}{500}$ 5. Find the acceleration of the 2 kg block in the following diagram.
3. This the acceleration of the 2 kg block in the following diagram.
net force is $\frac{8N}{4N}$ A= $\frac{F}{m} = \frac{4N}{2kg} = \frac{4N}{4N}$

Section 4: Work

$$W = F \times D$$

$$F = W$$

$$D = W$$

1. A watermelon weighing 10 newton is lifted 2 meters. How much work is done?

- 2. A force of 15 newtons is used to push a box along the floor a distance of 3 meters. How much work was done? W=FXD= 15NX3m=145
 - 3. It took 50 joules to push a chair 5 meters across the floor. With what force was the chair pushed?

4. A force of 100 Newtons was necessary to lift a rock. A total of 150 joules of work was done. How far was the rock lifted?

$$D = \frac{W}{F} = \frac{150 \, \text{J}}{100 \, \text{N}} = 1.5 \, \text{m}$$

Section 5 Power

- A mechanic uses a jack to tift a truck and does 72587 of work if he lifts the truck 45th, what was the power output? NOT Given all variables
- 2. How much work is done in order to cook a bag of popcorn in a 500-watt microwave oven for 5.5 minutes?

3. If a runner exerts 350J of work to make 125W of power, then how long did it take the runner to do

the work?
$$T = \frac{\omega}{P} = \frac{350J}{125\omega} = 2.8s$$