Practice Problems
Units:

$$
\begin{array}{ll}
\text { energy }=\text { joules } & \text { work }=\text { joules } \\
\text { Weight }=\text { newtons } & \text { power }=\text { watts } \\
\text { Height }=\text { meters } & \text { acceleration }=\mathrm{m} / \mathrm{s}^{2} \\
\text { Mass }=\text { kilograms } & \text { Force }=\text { newtons } \\
\text { Speed }=\mathrm{m} / \mathrm{s} & \text { Velocity }=\mathrm{m} / \mathrm{s} \text { in a specific direction }
\end{array}
$$

Section 1: Calculating Potential and Kinetic Energy
Formula: Potential energy $=$ weight $\times$ height $(\mathrm{PE}=\mathrm{W} \times \mathrm{H})$

$$
\text { Kinetic energy }=1 / 2\left(\text { Mass } x \text { Velocity }^{2}\right) \text { or }\left(\text { K.E. }=1 / 2 \mathrm{mv}^{2}\right)
$$

1. You serve volleyball with a mass of 2.1 kg . The ball leaves your hand with a speed of $30 \mathrm{~m} / \mathrm{s}$. The ball has Kinetic energy. Calculate it. $K E=\frac{1}{2}\left(m \times V^{2}\right)$

$$
\begin{aligned}
& 1 / 2\left(\mathrm{~m} \times v^{2} \cdot\left(2.1 \mathrm{~kg} \cdot(30 \mathrm{~ms})^{2}\right) \frac{1}{2}(1890)\right. \\
& 1 / 2\left(2.1 \mathrm{~kg} \cdot 900 \mathrm{~ms} \mathrm{~s}^{2} .\right.
\end{aligned}
$$

2. A cinder block is sitting on a platform 20 m high. It weighs 79 N . The block has potent al energy. Calculate it.

$$
\begin{array}{ll}
P E= & w \times h \\
79 \mathrm{~N} \times 20 \mathrm{~m}=1580 \mathrm{~J}
\end{array}
$$

Section 2: Speed (velocity is speed with direction) and Acceleration


$$
\begin{aligned}
& S=\frac{D}{T} \quad D=S \times T \\
& T=\frac{D}{S}
\end{aligned}
$$

1. Find the velocity of a truck that travels 75 miles north in 2.5 hours.

$$
\frac{75 \text { mils }}{2.5 \mathrm{r}}=30 \text { milesperhour North }
$$

2. Find the speed of a bicyclist who took an hour and a half to travel 10 kilometers.

$$
S=\frac{D}{T}=\frac{100 \mathrm{~m}}{1.5 \mathrm{hr}} \quad 6.67 \mathrm{~km} / \mathrm{hr}
$$

3. If a runner maintains a constant speed of 12 miles $/$ hour, how long will it take to complete a half marathon race of 13.1 miles?

$$
T=\frac{8}{s}=\frac{1.312}{12} x+d h=1.09 \text { hours }
$$

4. A helium balloon is carried by the wind at a constant speed of 10.17 mph . How far did the balloon travel in one day?

$$
D=S \times T \quad 10: 17 \mathrm{mph} \times 24 \mathrm{hrs}
$$



$$
\text { traveling } 6 \mathrm{~m} / \mathrm{s} \text {. What is his acceleration? } \frac{6 \mathrm{~m} / \mathrm{s}-3 \mathrm{~m} / \mathrm{s}}{8 \mathrm{~s}}=\frac{3 \mathrm{~m} / \mathrm{s}}{8 \mathrm{~s}} .375 \mathrm{~m} / \mathrm{s}^{2}
$$

$V_{i}^{\prime}$
6. A soccer player is running at $\sigma^{\zeta} \mathrm{m} / \mathrm{s}$. He then stumbles over an opponent's foot falling and rolling to a stop. This took 4 seconds. What was his acceleration? $V_{F}$

$$
\frac{0 \mathrm{~m} / \mathrm{s}-6 \mathrm{~m} / \mathrm{s}}{4 \mathrm{~s}}=\frac{-6 \mathrm{~m} / \mathrm{s}}{4 \mathrm{~s}}-1.5 \mathrm{~m} / \mathrm{s}
$$

Section 3: Force


1. How much force is needed to accelerate a mass of 160 kg by $2 \mathrm{~m} / \mathrm{s}^{2}$ ?
2. How much force is required to accelerate a 5 kg mass at $20 \mathrm{~m} / \mathrm{s}^{2 ?}$

$$
F=m A=5 \mathrm{~kg} 20 \mathrm{ml} \mathrm{~s}^{2}=100 \mathrm{~N}
$$

3. What is the acceleration of a 10 kg mass pushed by a 5 N force?

$$
A=\frac{F}{\text { fer }} \frac{5 N}{10 k g}=-5 \mathrm{~m} / \mathrm{m}^{2}
$$

4. Given a force of 56 N and acceleration of $7 \mathrm{~m} / \mathrm{s}^{2}$, what is the mass?
5. Find the acceleration of the 2 kg block in the following diagram.


$$
\text { net force is } \begin{array}{r}
8 N \\
-4 N \\
\hline 4 N
\end{array}
$$

$$
\begin{gathered}
A=\frac{F}{m}=\frac{4 N}{2 k g}= \\
2 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

Section 4: Work


$$
\begin{aligned}
W & =F \times D \\
F & =\frac{W}{D}
\end{aligned}
$$

$$
D=\frac{\omega}{F}
$$

1. A watermelon weighing 10 newton is lifted 2 meters. How much work is done?

$$
W=F \times D \quad 10 \mathrm{~N} \times 2 \mathrm{~m}=20 \mathrm{~J}
$$

2. A force of 15 newtons is used to push a box along the floor a distance of 3 meters. How much work was done?

$$
\omega=F \times D=15 \mathrm{~N} \times 3 \mathrm{~m}=45 \mathrm{~J}
$$

3. It took 50 joules to push a chair 5 meters across the floor. With what force was the chair pushed?

$$
F=\frac{\omega}{0}=505=10 \mathrm{~N}
$$

4. A force of 100 Newtons was necessary to lift a rock. A total of 150 joules of work was done. How far was the rock lifted?

$$
\frac{w}{F}=\frac{150 \mathrm{~J}}{100 \mathrm{~N}}=1.5 \mathrm{~m}
$$

Section 5 Power

2. How much work is done in order to cook a bag of popcorn in a 500-watt microwave oven for 5.5 minutes?

$$
W=P \times T
$$

$$
\begin{aligned}
& 500 \mathrm{~W} \times 5.5 \mathrm{~min} \text { E } \\
& =2.8 \mathrm{~s}
\end{aligned}
$$

